Change venv
This commit is contained in:
@@ -26,70 +26,77 @@
|
||||
# 02110-1301 USA
|
||||
######################### END LICENSE BLOCK #########################
|
||||
|
||||
from collections import namedtuple
|
||||
from typing import Dict, List, NamedTuple, Optional, Union
|
||||
|
||||
from .charsetprober import CharSetProber
|
||||
from .enums import CharacterCategory, ProbingState, SequenceLikelihood
|
||||
|
||||
|
||||
SingleByteCharSetModel = namedtuple('SingleByteCharSetModel',
|
||||
['charset_name',
|
||||
'language',
|
||||
'char_to_order_map',
|
||||
'language_model',
|
||||
'typical_positive_ratio',
|
||||
'keep_ascii_letters',
|
||||
'alphabet'])
|
||||
class SingleByteCharSetModel(NamedTuple):
|
||||
charset_name: str
|
||||
language: str
|
||||
char_to_order_map: Dict[int, int]
|
||||
language_model: Dict[int, Dict[int, int]]
|
||||
typical_positive_ratio: float
|
||||
keep_ascii_letters: bool
|
||||
alphabet: str
|
||||
|
||||
|
||||
class SingleByteCharSetProber(CharSetProber):
|
||||
SAMPLE_SIZE = 64
|
||||
SB_ENOUGH_REL_THRESHOLD = 1024 # 0.25 * SAMPLE_SIZE^2
|
||||
SB_ENOUGH_REL_THRESHOLD = 1024 # 0.25 * SAMPLE_SIZE^2
|
||||
POSITIVE_SHORTCUT_THRESHOLD = 0.95
|
||||
NEGATIVE_SHORTCUT_THRESHOLD = 0.05
|
||||
|
||||
def __init__(self, model, reversed=False, name_prober=None):
|
||||
super(SingleByteCharSetProber, self).__init__()
|
||||
def __init__(
|
||||
self,
|
||||
model: SingleByteCharSetModel,
|
||||
is_reversed: bool = False,
|
||||
name_prober: Optional[CharSetProber] = None,
|
||||
) -> None:
|
||||
super().__init__()
|
||||
self._model = model
|
||||
# TRUE if we need to reverse every pair in the model lookup
|
||||
self._reversed = reversed
|
||||
self._reversed = is_reversed
|
||||
# Optional auxiliary prober for name decision
|
||||
self._name_prober = name_prober
|
||||
self._last_order = None
|
||||
self._seq_counters = None
|
||||
self._total_seqs = None
|
||||
self._total_char = None
|
||||
self._freq_char = None
|
||||
self._last_order = 255
|
||||
self._seq_counters: List[int] = []
|
||||
self._total_seqs = 0
|
||||
self._total_char = 0
|
||||
self._control_char = 0
|
||||
self._freq_char = 0
|
||||
self.reset()
|
||||
|
||||
def reset(self):
|
||||
super(SingleByteCharSetProber, self).reset()
|
||||
def reset(self) -> None:
|
||||
super().reset()
|
||||
# char order of last character
|
||||
self._last_order = 255
|
||||
self._seq_counters = [0] * SequenceLikelihood.get_num_categories()
|
||||
self._total_seqs = 0
|
||||
self._total_char = 0
|
||||
self._control_char = 0
|
||||
# characters that fall in our sampling range
|
||||
self._freq_char = 0
|
||||
|
||||
@property
|
||||
def charset_name(self):
|
||||
def charset_name(self) -> Optional[str]:
|
||||
if self._name_prober:
|
||||
return self._name_prober.charset_name
|
||||
else:
|
||||
return self._model.charset_name
|
||||
return self._model.charset_name
|
||||
|
||||
@property
|
||||
def language(self):
|
||||
def language(self) -> Optional[str]:
|
||||
if self._name_prober:
|
||||
return self._name_prober.language
|
||||
else:
|
||||
return self._model.language
|
||||
return self._model.language
|
||||
|
||||
def feed(self, byte_str):
|
||||
def feed(self, byte_str: Union[bytes, bytearray]) -> ProbingState:
|
||||
# TODO: Make filter_international_words keep things in self.alphabet
|
||||
if not self._model.keep_ascii_letters:
|
||||
byte_str = self.filter_international_words(byte_str)
|
||||
else:
|
||||
byte_str = self.remove_xml_tags(byte_str)
|
||||
if not byte_str:
|
||||
return self.state
|
||||
char_to_order_map = self._model.char_to_order_map
|
||||
@@ -103,9 +110,6 @@ class SingleByteCharSetProber(CharSetProber):
|
||||
# _total_char purposes.
|
||||
if order < CharacterCategory.CONTROL:
|
||||
self._total_char += 1
|
||||
# TODO: Follow uchardet's lead and discount confidence for frequent
|
||||
# control characters.
|
||||
# See https://github.com/BYVoid/uchardet/commit/55b4f23971db61
|
||||
if order < self.SAMPLE_SIZE:
|
||||
self._freq_char += 1
|
||||
if self._last_order < self.SAMPLE_SIZE:
|
||||
@@ -122,23 +126,36 @@ class SingleByteCharSetProber(CharSetProber):
|
||||
if self._total_seqs > self.SB_ENOUGH_REL_THRESHOLD:
|
||||
confidence = self.get_confidence()
|
||||
if confidence > self.POSITIVE_SHORTCUT_THRESHOLD:
|
||||
self.logger.debug('%s confidence = %s, we have a winner',
|
||||
charset_name, confidence)
|
||||
self.logger.debug(
|
||||
"%s confidence = %s, we have a winner", charset_name, confidence
|
||||
)
|
||||
self._state = ProbingState.FOUND_IT
|
||||
elif confidence < self.NEGATIVE_SHORTCUT_THRESHOLD:
|
||||
self.logger.debug('%s confidence = %s, below negative '
|
||||
'shortcut threshhold %s', charset_name,
|
||||
confidence,
|
||||
self.NEGATIVE_SHORTCUT_THRESHOLD)
|
||||
self.logger.debug(
|
||||
"%s confidence = %s, below negative shortcut threshold %s",
|
||||
charset_name,
|
||||
confidence,
|
||||
self.NEGATIVE_SHORTCUT_THRESHOLD,
|
||||
)
|
||||
self._state = ProbingState.NOT_ME
|
||||
|
||||
return self.state
|
||||
|
||||
def get_confidence(self):
|
||||
def get_confidence(self) -> float:
|
||||
r = 0.01
|
||||
if self._total_seqs > 0:
|
||||
r = ((1.0 * self._seq_counters[SequenceLikelihood.POSITIVE]) /
|
||||
self._total_seqs / self._model.typical_positive_ratio)
|
||||
r = (
|
||||
(
|
||||
self._seq_counters[SequenceLikelihood.POSITIVE]
|
||||
+ 0.25 * self._seq_counters[SequenceLikelihood.LIKELY]
|
||||
)
|
||||
/ self._total_seqs
|
||||
/ self._model.typical_positive_ratio
|
||||
)
|
||||
# The more control characters (proportionnaly to the size
|
||||
# of the text), the less confident we become in the current
|
||||
# charset.
|
||||
r = r * (self._total_char - self._control_char) / self._total_char
|
||||
r = r * self._freq_char / self._total_char
|
||||
if r >= 1.0:
|
||||
r = 0.99
|
||||
|
Reference in New Issue
Block a user