Change venv

This commit is contained in:
Ambulance Clerc
2023-05-31 08:31:22 +02:00
parent fb6f579089
commit fdbb52c96f
466 changed files with 25899 additions and 64721 deletions

View File

@@ -26,70 +26,77 @@
# 02110-1301 USA
######################### END LICENSE BLOCK #########################
from collections import namedtuple
from typing import Dict, List, NamedTuple, Optional, Union
from .charsetprober import CharSetProber
from .enums import CharacterCategory, ProbingState, SequenceLikelihood
SingleByteCharSetModel = namedtuple('SingleByteCharSetModel',
['charset_name',
'language',
'char_to_order_map',
'language_model',
'typical_positive_ratio',
'keep_ascii_letters',
'alphabet'])
class SingleByteCharSetModel(NamedTuple):
charset_name: str
language: str
char_to_order_map: Dict[int, int]
language_model: Dict[int, Dict[int, int]]
typical_positive_ratio: float
keep_ascii_letters: bool
alphabet: str
class SingleByteCharSetProber(CharSetProber):
SAMPLE_SIZE = 64
SB_ENOUGH_REL_THRESHOLD = 1024 # 0.25 * SAMPLE_SIZE^2
SB_ENOUGH_REL_THRESHOLD = 1024 # 0.25 * SAMPLE_SIZE^2
POSITIVE_SHORTCUT_THRESHOLD = 0.95
NEGATIVE_SHORTCUT_THRESHOLD = 0.05
def __init__(self, model, reversed=False, name_prober=None):
super(SingleByteCharSetProber, self).__init__()
def __init__(
self,
model: SingleByteCharSetModel,
is_reversed: bool = False,
name_prober: Optional[CharSetProber] = None,
) -> None:
super().__init__()
self._model = model
# TRUE if we need to reverse every pair in the model lookup
self._reversed = reversed
self._reversed = is_reversed
# Optional auxiliary prober for name decision
self._name_prober = name_prober
self._last_order = None
self._seq_counters = None
self._total_seqs = None
self._total_char = None
self._freq_char = None
self._last_order = 255
self._seq_counters: List[int] = []
self._total_seqs = 0
self._total_char = 0
self._control_char = 0
self._freq_char = 0
self.reset()
def reset(self):
super(SingleByteCharSetProber, self).reset()
def reset(self) -> None:
super().reset()
# char order of last character
self._last_order = 255
self._seq_counters = [0] * SequenceLikelihood.get_num_categories()
self._total_seqs = 0
self._total_char = 0
self._control_char = 0
# characters that fall in our sampling range
self._freq_char = 0
@property
def charset_name(self):
def charset_name(self) -> Optional[str]:
if self._name_prober:
return self._name_prober.charset_name
else:
return self._model.charset_name
return self._model.charset_name
@property
def language(self):
def language(self) -> Optional[str]:
if self._name_prober:
return self._name_prober.language
else:
return self._model.language
return self._model.language
def feed(self, byte_str):
def feed(self, byte_str: Union[bytes, bytearray]) -> ProbingState:
# TODO: Make filter_international_words keep things in self.alphabet
if not self._model.keep_ascii_letters:
byte_str = self.filter_international_words(byte_str)
else:
byte_str = self.remove_xml_tags(byte_str)
if not byte_str:
return self.state
char_to_order_map = self._model.char_to_order_map
@@ -103,9 +110,6 @@ class SingleByteCharSetProber(CharSetProber):
# _total_char purposes.
if order < CharacterCategory.CONTROL:
self._total_char += 1
# TODO: Follow uchardet's lead and discount confidence for frequent
# control characters.
# See https://github.com/BYVoid/uchardet/commit/55b4f23971db61
if order < self.SAMPLE_SIZE:
self._freq_char += 1
if self._last_order < self.SAMPLE_SIZE:
@@ -122,23 +126,36 @@ class SingleByteCharSetProber(CharSetProber):
if self._total_seqs > self.SB_ENOUGH_REL_THRESHOLD:
confidence = self.get_confidence()
if confidence > self.POSITIVE_SHORTCUT_THRESHOLD:
self.logger.debug('%s confidence = %s, we have a winner',
charset_name, confidence)
self.logger.debug(
"%s confidence = %s, we have a winner", charset_name, confidence
)
self._state = ProbingState.FOUND_IT
elif confidence < self.NEGATIVE_SHORTCUT_THRESHOLD:
self.logger.debug('%s confidence = %s, below negative '
'shortcut threshhold %s', charset_name,
confidence,
self.NEGATIVE_SHORTCUT_THRESHOLD)
self.logger.debug(
"%s confidence = %s, below negative shortcut threshold %s",
charset_name,
confidence,
self.NEGATIVE_SHORTCUT_THRESHOLD,
)
self._state = ProbingState.NOT_ME
return self.state
def get_confidence(self):
def get_confidence(self) -> float:
r = 0.01
if self._total_seqs > 0:
r = ((1.0 * self._seq_counters[SequenceLikelihood.POSITIVE]) /
self._total_seqs / self._model.typical_positive_ratio)
r = (
(
self._seq_counters[SequenceLikelihood.POSITIVE]
+ 0.25 * self._seq_counters[SequenceLikelihood.LIKELY]
)
/ self._total_seqs
/ self._model.typical_positive_ratio
)
# The more control characters (proportionnaly to the size
# of the text), the less confident we become in the current
# charset.
r = r * (self._total_char - self._control_char) / self._total_char
r = r * self._freq_char / self._total_char
if r >= 1.0:
r = 0.99